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Metastability in the Potts Model 
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Metastability in the ferromagnetic p-state Potts model defined on the Cayley 
tree is discussed. It is shown that the sign of the boundary field H s determines 
the order of the transition as well as the stability of the low-temperature phase. 
Lowering the temperature with H s >  0, a system with p < 2 (p > 2) will display 
a second (first)-order transition to a metastable (stable) phase. For H s <0 a 
second (first)-order transition to a metastable (stable) phase occurs if p>2  
(p < 2). In this case the system also has a residual entropy which is negative for 
p<2. 

KEY WORDS: Bethe-Peierls and Bragg-Williams maps; boundary condi- 
tion; metastability; residual entropy. 

1. I N T R O D U C T I O N  

The nature  of the phase t ransi t ion occurring in the p-state ferromagnetic 
Potts  model  was first discussed by Kihara  e t  al. ~1~ in the Bragg-Wil l iams 

approximat ion .  For  p > 2 there is a first-order t ransi t ion at the critical tem- 

perature T o ( p ) ,  while for p ~< 2 there is a second-order t ransi t ion at To(2). 
Recently another  classification scheme, where the t ransi t ion is first order 
for all p ~ 2 and  second order for p = 2, has emerged from the Bethe-  
Peierls approx imat ion  of the Potts model. (2) This result is obtained by 
s tudying the behavior  of the system deep inside the Cayley tree (Fig. 1) and 
by using the criterion of selecting the solut ion of the self-consistency condi- 
t ion which gives the absolute m i n i m u m  of the free energy in each phase. 
Recalling the fact that distinct cluster approximations/3) bear the same 

Departamento de Fisica, Universidade Federal do Amazonas, 69000 Manaus AM, Brazil. 
2 Instituto de Fisica e Quimica de Sio Carlos, Universidade de Silo Paulo, 13560 Sio Carlos 

SP, Brazil. 

673 

0022-4715/91/'0800-0673506.50/0 ~ 1991 Plenum Publishing Corporation 



0 
~

 
~

 

~
'~

-~
 

~ 
~ 

~
.~

.~
 

..
.~

 
~

'~
 

o
'~

 
~ 

-~
 

/ 
/

"
 

~ 
o

'~
 

~ 
~ 

~ 
.i

 
. 

=
~

 
~ 

~ 
�9

 

~ 
o~

 
~ 

.I
 

�9
 

~
.~

'o
 

'~
 

~ 
..

 
~ 

.
.

.
.

.
.

.
.

.
.

 

�9
 

o 
~-

 
~

_
-.

~
~

 
~

o
 

~
 

~
'~

 
-~

 
0

"0
" 

"X
 

~
. 

~
 

~
" 

- 
~

" 
~

 
. 

~
~

 
~ 

o 
~

' 
"~

 
�9

 

~ 
~

.~
 

~
-'

 

~
f 

Y
 

'-
4

" 



Metastabil i ty in the Potts Model on the Cayley Tree 675 

qualitative picture of a phase transition, we are led to conclude that the 
discrepancy between the classification schemes must not be attributed 
to the differences between the Bragg-Williams and the Bethe-Peierls 
approximations and that the explanation must be sought elsewhere. 

In this paper the whole scenario where the above results can be 
accommodated is presented. This is accomplished by studying the effects of 
the sign of the boundary magnetic field Hs on the thermodynamic behavior 
of the system deep inside the Cayley tree. By exploring the hierarchical 
nature of the branches which compose the tree, a simple real-space renor- 
realization group precedure is implemented. In this way we obtain a 
definite prescription to calculate the free energy, the renormalization group 
transformation which yields the self-consistency condition, and a criterion 
to select its solution. With this prescription we show that the initial condi- 
tion of the renormalization group transformation is given by the boundary 
field Hs so that a different choice of the sign of Hs will give a different 
solution for the order parameter. As a consequence, phase transitions of 
different orders can be obtained. The classification scheme of Kihara et al. 
is recovered if the system is cooled in the presence of a positive Hs. To 
obtain the scheme of di Liberto et aI., one has to use the mixed boundary 
field Hs, which is positive for p > 2 and negative for p < 2. If, on the other 
hand, Hs is chosen to be negative, one obtains the reverse situation 
analyzed by Kihara et al., i.e., the system with p > 2 will undergo a second- 
order transition at To(2), while for p < 2 there is a first-order transition at 
To(p). We have also observed that there is a region of nonphysical 
behavior with negative entropy in the stable phase of the system with p < 2. 
It is also shown that the low-temperature phase in the case of the first- 
order transitions is always the stable phase and that the coexisting 
metastable phase is reached if the system undergoes a second-order 
transition. These results are consolidated in Fig. 2. 

2. THE FREE ENERGY A N D  THE BETHE-PEIERLS M A P  

It is known that a classical spin model defined on the (loopless) 
Cayley tree is trivially solved having its partition function equal to that 
of the system defined on the open chain, c4) However, the problem of 
calculating the partition function becomes complex if a magnetic field is 
turned on. In the presence of a magnetic field the system on a Cayley tree 
can display two distinct kinds of behavior. As first shown for the Ising 
model/5/ the free energy possesses a Characteristic field-dependent power 
term whose exponent varies with the temperature, leading to a peculiar 
transition of continuous order. (6) However, if the contribution to the free 
energy from the spins on the shells near the surface is suppressed, one 
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recovers the Bethe-Peierls approximation,  which describes the system 
behavior inside the tree. In order to obtain the Bethe-Peierls free energy we 
first calculate the free energy of the system put on the closed asymmetric 
tree (c.a.t) and then introduce a procedure to take into account the 
contribution from the surface spins. 

tc(P) 
1.4 

1.3 

1.2 

I.I 

1.0 

0.0 

1.0 

I 
I 
l 
I 
l 

I I H s < O  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

\ 

Hs>O~,,,, ,,/ 

\ 
I 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/H / S / 
>0  

Hs<O 

I I I ~ 

2.0 3.0 4.0 5.0 
P 

Fig. 2. The reduced transition temperature tc(p)=KBTc(p)/J (broken line) and tc(2 ) =  
K B Tc(2)/J (solid line) as function of p. The transition at to(p) [tc(2)] is of first (second) 
order and the low-temperature free energy is an absolute (local) minimum. The sign of the 
boundary field to access these phases is indicated. Below the dashed-dotted curve t~(p) the 
(absolute minimum) free energy yields a negative entropy. 
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The system is defined by the Hamiltonian 

( i j )  i s 

where 2i = 0, 1,..., p - 1 and 6 is the Kronecker delta. The first summation 
is carried out over all n.n. pairs inside the tree, the second (third) summa- 
tion is over all spins in the interior (surface) of the tree, and )~g is the ghost 
spin. The advantages of introducing the c.a.t with the ghost spin are the 
following: (i) First, the bonds representing the interaction of the ghost spin 
with the other spins introduce loops in the lattice, making the system non- 
trivial. (ii)The closed asymmetric branches of the tree are hierarchical 
lattices. (iii) By freezing the ghost spins in one of its p states, in Eq. (1) one 
recovers the usual Hamiltonian of the model put on an open tree in the 
presence of a magnetic field. Finally, we observe that the partition function 
obtained from Eq. (1) is just p times larger than the partition function 
obtained when the ghost spin is frozen. 

The derivation of the Bethe-Peierls free energy is carried out 
as follows. As the first step we calculate the partition function 
ZN(T, H, Hs; p, a) of the system in a c.a.t with N generations (see Fig. 1) 
and coordination number a. This is accomplished by freezing the central 
spin and those in the first generation and carrying out the summation over 
all other spins in the treeJ 7) This is done for all possible configurations of 
the central spin and its neighbors 2,. Adding all these contributions, we 
obtain 

Z N (  T , H, Hs; p, a) 

= h-1Eo)-  l z ~  (L = 0) + (p - 1) z ~  (L r 0) ] ~ 

+(p--1){Zbu(2,=O)+[CO--l+(p--Z)]ZbU(2,#O)}~ (2) 

where 

h = exp -p~H, c0 = exp -p~J  (3) 

Z~v(2t) is the partition function of the branch of the tree with N genera- 
tions and having its top spin 2t frozen in one of p possible states. Now a 
recursion relationship for Z6(2,)  can be determined by exploring the fact 
that the branches are hierarchical lattices. By summing the spins on the 
surface of a branch with N generations the following recursive relationship 

b between ZbN and Z N_ 1 is established: 

ZbN(T, H, Hs: p, a, 2 t = 2 )  

[ h ~ + o ) _ l + ( p _ 2 ) ] ( ~  1)~N-1~ b = ZN_I(T,H, HI ,p ,a ,  2t=2 ) (4) 
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where h s is obtained from Eq. (3) by substituting H by Hs. The renor- 
malized field H 1, which acts on the surface spins of the branch with N -  1 
generations, is determined by the renormalization group transformation 
(Bethe-Peierls map) (8) given by 

Ahi + {o~ ~- 1 
h~+i=h  \ ~  / , i=0 ,  1,.,., N -  1 (5) 

where 

hi = exp - p f l H  I (6) 

A = 1 + (p-2)co ,  B = ( p -  1)~o (7) 

H o - H s  (8) 

Having calculated the partition function for the whole tree, we now 
proceed to obtain the free energy deep inside the tree, therefore eliminating 
the contribution of the spins near and on the surface. This is accomplished 
by subtracting from the free energy - K B T l n Z N + , ( T , H ,  H s ; p , a )  
of a tree with N + n  generations the free energy - ( a - l ) "  
KBTln ZN(T, H, Hs; p, a) of ( a -  1)" trees with N generations. ~ In the 
thermodynamic limit (N--* oo) the dependence of the BP free energy 
density on n disappears and one obtains that 

flf = - [In ZN+ n - -  ( a  - -  1)" In ZN] 

= - ( a  - 1 ) l n ( 1  - tx*) + l n ( 1  - x * )  

+ l n [ l + ( p - 1 ) t x * 2 ] + ~ l n ( 1 - t ) - l n p  (9) 

where 

1--gO 
t - ( 1 0 )  

1 + ( p -  1)co 

1 - h *  
x* - ( l l )  

1 + ( p  - 1 )  h *  

and h* is the attracting fixed point of the Bethe-Peierls map, which is 
obtained from Eq. (5) by letting i--* oo. We notice that in this limit the BP 
map recovers the self-consistency condition. We want to stress that Eq. (9) 
refers only to the interior of the tree, since it involves the fixed point of the 
map. This is clear since starting from the surface each iteration take one 
step (generation) toward the interior of the tree such that in the limit 
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i--* oe the recursive relationship gives us the effective field deep inside the 
tree, i.e., infinitely far from the surface. Even though the contribution of the 
surface spins is suppressed from Eq. (9) the sign of the surface field is still 
relevant since it will determine the fixed point. This can be demonstrated 
observing first that the BP map is a rational map parametrized by the tem- 
perature, by the external field H, and by the number of states p of the Potts 
variable, and has its degree equal to a -  1. The above statement concerning 
the effects of the initial condition Hs is supported by the following results 
from the theory of rational maps(l~ 

(a) The number of attracting periodic orbits of a rational map R(x) 
of degree d >/2 is at most 2 d -  2. Since each attracting fixed point specifies 
a phase, the BP map with ferromagnetic interaction J >  0 has at most two 
attracting fixed points. 

(b) The attracting orbits of a rational map R(x) of degree d~> 2 are 
contained in the Fatou set F(R), while the repelling orbits are contained in 
the Julia set J(R) which is the complement of F(R). 

(c) Let p be an attractive fixed point of R(x). Then the attractive 
basin o f p  is the set WS(p)= {xlR'(x)~p} as n--* oe whose frontier is 
J(R). The Julia set is also the closure of the set of repelling periodic points. 

(d) The Fatou set, as well as the Julia set, is a completely invariant 
set, i.e., if x e F(R), then R(x)~ F(R) and R-I(x)~ F(R), where R-l(x) are 
the preimages of x. This means that once inside of an attracting basin (or 
on its border), a point will not leave it by an application of R(x). 

At high temperature the BP map has only one attracting basin, so that 
no matter what the sign is of the boundary (initial) field Ho = Hs, the fixed 
point is the trivial paramagnetic x* - -0  fixed point. For a certain range of 
H and T the self-consistent equation for x* admits two other fixed points, 
one attracting and the other a repelling one which appear from a tangent 
bifurcation (Fig. 3). The sign and the strength of the surface field will 
determine the attracting basin in which we are starting in the recursive 
relationship. In other words, by determining in which attracting basin 
we are starting with, the boundary field also will determine the attracting 
fixed point of the BP map. Observing that these results are independent of 
the degree of the BP map we shall consider, for the sake of simplicity in 
carrying out numerical calculation, the limit of infinite coordination 
number cr ~ 0% l i m o ~  Ja ~ cte in Eqs. (5) (11). In this limit the Bragg- 
Williams approximation of the free energy obtained by Kihara et al. is 
recovered, 

flf =flJm* +ln(1-m*)-f flJ(P-1)(m*)22 In p--~-flJ (12) 
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Fig. 3. Schematic plot of the zero-field, H = 0 fixed points of the Bragg-Williams map 
[Eq. (13)] as a function of the reduced temperature t= KB T/J. The solid, dashed-dotted, and 
dotted lines denotes the stable (absolute minimum free energy), metastable (local minimum 
free energy), and unstable (maximum free energy) phases. The arrows indicate the intervals 
where the fixed points are attractors or repellers. 
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where m* is the fixed point of the Bragg-Williams map, which is a par- 
ticular case of the Bethe-Peierls obtained in the infinite coordination limit, 

1 - e-~P(H+ Jmi) 

mi+l = W(T,  H, p) - 1 + ( p - -  1) e ~p(~Z+Smi) (13) 

Jm 1 = Hs;  i = 1, 2 .... (14) 

At H =  0 the fixed-point solutions of the Bragg-Williams map are shown 
in Figs. 3a and 3b. As shown by Kihara et al. the critical temperature To(p) 

is obtained from the condition f ' ( m ) = 0  and f ( m ) = f ( 0 ) ,  while the tem- 
perature To(2) is obtained from the condition that the trivial paramagnetic 
fixed point m * =  0 becomes indifferent. Using these condition and selecting 
first H s > 0 and then H s < 0, we have obtained the result plotted in Fig. 2. 

Fixing the temperature and comparing the free energies obtained by 
using the different attracting fixing points of the BW, map we have verified 
that low-temperature phases of the first-order transition at Tc(p) are the 
ones which give the absolute minima, while the low-temperature phases of 
the second-order transition are always the relative minima. 

3. S U M M A R Y  A N D  C O N C L U S I O N S  

By combining Eq. (12), which gives the self-consistent free energy 
functional, with the Bragg-Williams map and its initial condition 
[Eqs. (13)-(14)],  we obtain a clear prescription to obtain the thermo- 
dynamic behavior of the system. As a consequence of remark (d), an 
attrracting fixed point (phase) will be reached if and only if we start with 
a initial condition inside its basin, i.e., if we have picked up correctly the 
sign and strength of the surface field. Because of this property, the criterion 
of selecting the solution which gives the absolute minimum of the free 
energy can be relaxed. Any stable nonzero solution of the fixed-point equa- 
tion is acceptable if it yields a thermodynamically sound behavior, i.e., if 
the free energy is a concave and a monotonically decreasing function of the 
temperature. For  convenience we shall call convexity violation (ix) the non- 
obedience of one or both of these properties of the free energy. Having the 
distinct free energies as functions of T, generated from the combination of 
Eq. (12) with the stable fixed points of Eq. (13), we obtain the following 
results: 

(i) The transition at Tc(p) is of first order. For p > 2 the low-tem- 
perature phase is an absolute minimum of the free energy. The system is 
well-behaved with a nonnegative specific heat and entropy which vanishes 
as T ~ 0. For  p < 2, although the free energy is an absolute minimum, the 
entropy becomes negative below T~(p) as indicated in Fig. 2. 
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(ii) The transition at Tc(2) is of second order. There is no convexity 
violation for all p and the low-temperature phase is a local minimum of the 
free energy. For p > 2 there is a residual entropy S/KB = In(p-- 1). 

(iii) The classification scheme of Kihara et al. is obtained using only 
the nonnegative stable fixed points (Hs > 0). 

(iv) The classification scheme of di Liberto etal. where the 
transitions are always of first order is obtained using Hs > 0 (Hs < 0) for 
p > 2 (p < 2). In the low-temperature phase, which is an absolute minimum 
of the free energy, one observes convexity violation (negative entropy) in a 
system with p < 2. In the Bethe-Peierls approximation (finite coordination 
number), besides the negative entropy at low temperature in the system 
with p > 2, the violation of convexity is also manifested in the low-tem- 
perature specific heat, which becomes negative for systems with p < 2. 

In conclusion, we have discussed the nature of the phase transition as 
well as the physical behavior of the low-temperature phases of the 
ferromagnetic p-state Potts model in the Bethe-Peierls and in the Bragg- 
Williams approximations. It is shown that the sign of the boundary field is 
of vital importance, since the negative solution of the self-consistency equa- 
tion may yield a free energy which violates convexity. In order to avoid 
nonphysical behavior it is argued that the criterion of nonviolation of 
convexity is hierarchically superior to the criterion of selecting the solution 
which yields the absolute minimum of the free energy. 
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